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On t7ie Non-existence of Limiting Lines 
in Transonic Flows 

By C.   S. MORAWETZ and I. I. KOLODNER 

We consider flows past airfoils which are irrotationai and subsonic for low 
Mach numbers at large distances from the airfoil. If the Mach number at 
infinity is gradually increased, at some particular value a small supersonic 
region appears in the flow next to the airfoil. The flow appears to remain without 
shocks. If the Mach number at infinity is increased still more, a definite observ- 
able shock wave appears.  The question arises as to why this shock wave appears. 

It is possible and even quite probable, that no mixed flows without shocks 
exist as transition stages and that in genera! as soon as the supersonic region 
appears there is a shock wave which is at first so weak as to be unobserved. 

However, if these continuous mixed flows with varying Mach number do 
exist, an explanation of why the continuous flow breaks down is needed, and 
it has been suggested by various authors that a "limiting line" appears in the 
flow. ToUmien, Ringleb, von Karman, and Tsien have observed that, if flows 
and their corresponding profiles are constructed using solutions in the hodo- 
graph plane which depend continuously on some Mach number, there is always 
a critical Mach number where the mapping of the hodograph plane into the 
physical plane breaks down. In fact, the image in the physical plane has a fold 
in the supersonic region whose edge is known as the "limiting line." The 
Jacobian of the transformation from the hodograph plane to the physical plane 
vanishes along the limiting line. 

Tsien [l] and von Karman have proposed that continuous flow past a 
fixed airfoil also breaks down because of the appearance of a limiting line. 
Nikolskii and Taganov [2] have shewn that such a limiting line would have to 
start en the sonic curve. 

It was finally shown by Fiiedrichs [3] that limiting lines cannot appear 
anywhere in analytic flows which depend continuously on the entrance Mach 
number and that therefore the breakdown of potential flow must be due to 
other causes. (Friedrichs' proof was challenged in a controversial review by 
Tsien [4].) Man well [5] has shortened the proof considerably and eliminated 
the difficult lemma supplied by Flanders in [3]. The proof presented here 
dispenses with the condition of analyticity and requires only continuous second 
derivatives of the stream function. In addition we shall show, as in [5], that 
in the construction of flows past continuously changing profiles, [6,7] etc., the 
incidence of a limiting line corresponds to a profile of infinite curvature. 

These two results are formulated in two theorems. 
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Theorem 1. A limiting line cannot appear in a plane continuous flow pott 
an airfoil of bounded curvature if the flow depends continuously on the Mach number 
at infinity and has a bounded supersonic region. 

Theorem 2. If a set of flows which depend continuously on a parameter is 
constructed in the hodograph plane together with the corresponding set of profiles 
and if, for some critical value of the parameter, a limiting line appear*, then the 
corresponding profile has infinite curvature at some point. 

We make the following assumptions:1 

(a) A solution in the hodograph plane of the equations of an isentropic, 
irrotational, plane flow is given; i.e., we have a potential function <p(g,0) and a 
stream function +(q>0) which satisfy the equations 

*• - P~'«f, 
(1) 

*. = p-WV - C*]*. 

in a closed simply connected region D of the g,0-plane. Here p is a known func- 
tion of q obtained from the Bernoulli theorem for steady isentropic irrotational 
flow, and c* — dp/dp, where p — p(p) is the equation of state relating pressure 
to density. 

(b) if>, § , ^##, ^„ exist and are bounded in D. 
(c) The boundary C of D intersects the sonic line q — c — c» in exactly 

two points. 
(d) p > 0 throughout D. 
(e) The equation of state p « p(p) is such that d*p/dp* > 0. 

A solution 4>, $ of equations (1) gives rise to a flow in the physical plane 
provided that the Jacobian J of the transformation 

x - x(q,$) 

V = V(Q,Q 

does not vanish.   J is given by 

(2) 
d(0,q)       d(q,9)\d(T,y)J 7?•'      *"* 

- 4- (tf - (*7c" - D<f V!) - «"(«. - P-VV - <fl*5>. 
P 9 

A limiting line occurs if J vanishes along a curve. This cannot happen in 
the subsonic region, see [2], [3], and [8]. Thus a limiting line can occur only in 
the supersonic region or on the sonic curve. 

In connection with J we now prove the fundamental 

'Standard notation for the flow quantities is used. 



£*,**- 

(6) 

Then we have 

(7) 

2 da - «= d<» - d* 
9 

2 # - ^ dg + de. 

da       p£ dg      d0 

«« " ok dq      dd 

and from differentiating (3) we find, using (1), 

U, - p'Vgfo,, - k+,t - k,+t) + *„ - k+„ 

- -c^k-tqk.h , 

or by (3) 

(8) £/, = h'lk"qkJiU - V). 

Similarly, 

(9) V. - ip-'*-V.(V - U). 

But, by (7), since k is a function of q alone, we have 

t, = pq~xkkm =» pq~lkkt. 
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Lemma:   If J > 0 on C then / > 0 in Z) for g > cm. 

Proof:   We introduce the new dependent variables 

U » 9* ~ k+t 

(3) 
V - 9, + kh 

where 

(4) k* = p-'c-tf -c'). 

With this change of variables, J becomes, by (2) 

(5) J - q-'UV; [ 

hence J «* 0 if and only if U — 0 or V — 0 since by assumption (d) both U and 
V are bounded in D. 

From the differential equations (1) we find differential equations for U and 
V.  First we introduce the characteristic variables a and 0 by the equations 
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Substituting in (8) and (0), we thus obtain the equations 

U, - lk'lk,U - -Ip'VflfctV 
(10) 

V. - ir'Jfe.V - -Wk-'qk.U 

which may be rewritten as 
(k'lU*)t = -BL'V 

(11) 
(*~'V"). - -BUV 

where, by (4), (10), 

Thus B > 0 for g > c# > c since p, < 0 by Bernoulli's theorem and dc*/dp — 
d*j>/dp* > 0 by assumption (e). 

Let us suppose first that J vanishes or is negative somewhere in the super- 
sonic region q > cm > c of D. Since J is continuous and D is closed, there is 
a maximum value of q > c# for which 7 — 0. Hence by (6) and (4), there is a 
maximum value r = a* + 0* of o + 0 for which J = 0, and, for o •+• 0 > rf 

J > 0, since «'>0on C.   By (5), either U 
Suppose U = 0 at this point.   Then k~lU* 

0 or V «* 0 for a -= a*, 0 - 0*. 
0 at (<*•,/?*) but *-'£/" > 0 for 

a + 0 > T. Hence, for a - o*, 0 > 0*, *" f/ > 0 and therefore, by the 
mean value theorem, (k~xU*)t > 0 for a = o* and some value_0 of 0 where 
0 > 0*. But then by (11) since B> 0 we have t/7 < 0 at (a*, 0), that is, by 
(5), J < 0 at (a*,0). Since a* + 0 > T this contradicts J>Oforo + 0>r 
and hence U cannot vanish for q > cm. Similarly V cannot vanish, and thus J 
cannot vanish for q > c0 > c. 
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Next fcippoee tfca* J » 9 at a point P where q(P) • c„ and let e*(P), 
0(P) be th • coordinates u. thi« point in the characteristic coordinate system. 
By (11), sir "e J > 0 an>:; henre UV > 0 for q > c#, &"'£/' is decreasing in the 
direction of n?r*asing f .tfong the line a — a(P). Since A: '[/* is positive and 
continuous for y > c#, i:"!(/* must be bounded away from zero for q > c,. 
Hence | k~w%U i is boundi*! away from eero on a — a(P), 0 > 0(P). 

In terms of f, we And from (3) that 

(13) fc-'-'V. - J(*-/,cr + *,,V.) 
and hence, since ^# is bounded and A: —• 0 for a *=• *(P), 8 —»/?(P) from above, 
| fc-1/V, | is also bounded away from zero for o •« a(P), /J > B(P), B sufficiently 
close to B(P).  Therefore, using (4) expanded about q ** c — cm,we have 

(14) > 5 > 0 

for a - o(P), 0 > 0(P), /5 sufficiently close to 0(P). 
Now, since J vanishes at P, we have, by (2), ^,(P)  •» 0.   By Taylor's 

theorem, since the second derivatives of ^ exist and are bounded, 

(15) *, - (g - c.)P, + (» - 9(P))F, 
where P( and F, are bounded functions of 9 and 8.   Along the characteristic 
a — a(P), we have, by (6) 

(16) 6 - B(P) «  f v9/?"^~I g" dg - m(g)(g - c#) 

where m is bounded.   Hence, for a — a(P), B > B{P) 

(17) *. - (P, + mF7){q - c.) 

holds and therefore Jb. 
q - c+ is bounded.   But then _*i_ 

(? - «.)" 
0 for 

a - a(P), 0 -» 0(P) and this contradicts (14). Thus J > 0 for q - c„ as well 
as for 9 > e, and the lemma is proved. 

It remains only tc apply the above lemma to the two situations: flow past 
a fixed airfoil and the construction of airfoils. We treat both these situations 
at once, and note first that the boundary of the domain of the flow in the hodo- 
graph plane is the streamline corresponding to the profile; since the sonic line 
intersects the profile twice, we need only show that J > 0 on the profile to prove 
that J > 0 for q > c#. 

The curvature K of any streamline is given by the formula 

K •= d6/d* « 8, cos 8 + 6, sin 8. 

But the transformation x ** x(q,8), y = y(q,8) gives, if J does not vanish, 

Jt. - V. 
J9. - -x. 
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and hence 
KJq — y,q cos 6 — z,q sin 9 

p -i*. 
Using (2) we then find 

(18) A'VY - T tf > qj 
P 

on the profile, for g > c# > c. 
Consider a set, M, of Mach numbers at infinity and a set of profiles, which 

depend continuously on M, and have finite curvature. Let JK. be the upper 
bound for the curvatures, arid suppose that J > 0 on each profile for M < M*; 
J — 0 for M — Af * at some point on the supersonic section of the correspond- 
ing profile.   Then, by (18) 

J > l/Klq      for      Af < M*, 

where q is the limit speed.   Therefore, since J is a continuous function of M, 

J > 1/Klq > 0      for      M - M*; 

i.e., J cannot vanish on the boundary streamline.   This fact is derived by 
Friedrichs in [3]. 

The lemma may now be applied to show that J > 0 throughout the super- 
sonic region and on the sonic line. We conclude therefore that a limiting line 
cannot appear in the flow about a fixed airfoil with a bounded supersonic region 
adjacent to it, and if it appears in the construction of profiles with adjacent super- 
sonic regions then the curvature of the corresponding profile is infinite at some 
point. 
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